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Abstract
Topological interaction that arises in interlinked polymeric rings such as DNA
catenanes is considered. More specifically, the free energy for a pair of linked
random walk rings is derived where the distance R between two segments, each
of which is part of a different ring, is kept constant. Topology conservation
is imposed by the Gauss invariant. A previous approach (Otto and Vilgis
1998 Phys. Rev. Lett. 80 881) to the problem is refined in several ways. It is
confirmed that asymptotically, i.e. for large R � RG where RG is the average
size of a single random walk ring, the effective topological interaction (free
energy) scales ∝ R4.

PACS numbers: 02.40.−k, 02.50.−r, 05.20.−y, 05.40.Fb, 82.37.Rs, 87.15.La

1. Introduction

Despite their long history, topologically constrained systems such as knots and links became an
increasingly popular subject of research in statistical physics [1–6]. Chemically synthesized
links (called catenanes) were considered very early [7, 8]. In nature, multi-linked rings made of
DNA occur in bacteria such as Escherichia coli during the replication process as intermediate
products [9]. Specific topological states (links) can be formed artificially by turning enzymes
on and off, the so-called topoisomerases, which cut and glue the polymeric rings [9] (see
also [10]). These methods have been used to study experimentally the conformational statistics
of specific DNA catenanes [11], whose elasticity could also be studied using single-molecule
techniques [12]. From the viewpoint of polymer physics topological interactions due to fixed
entanglements remain a challenging problem for systems such as rubber networks [13, 14].

A fundamental problem in theoretical approaches to linked polymer rings systems is the
specification of topological constraints. The simplest approach introduced by Edwards [1]
is a two-ring invariant, known as the Gauss integral. It is one of the simplest invariants
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(c)(a)                                          (b)

Figure 1. (a) The trivial link: two non-entangled rings with linking number 0. (b) Two entangled
rings with linking number −1. (c) Whitehead link: two entangled rings with linking number 0.
The oriented surface bounded by the ‘thick’ ring is pierced by the other ring once in a positive
sense, once in a negative sense.

involving a double line integral of a function based on respective polymer segment positions
of each ring. Thus, it allows us to couple explicitly polymer conformation and topology
conservation. Although being a topological invariant, i.e. being independent of the specific
polymer conformation as long as the topological state (here the mutual linking number) is
conserved, it has the disadvantage of not being one-to-one. The so-called Whitehead link
(being entangled due to self-intersections one single ring with itself, see figure 1) and the
trivial link (consisting of two non-entangled rings) have both the same linking number zero
(see [15] for lucid discussion of this point). This result has aroused criticism against the use
of the Gauss invariant in the context of entangled polymer rings (see e.g. [16]).

The present work responds to these objections in the following way. First, we restrict our
discussion to random walk rings which are particularly simple to deal with within an analytical
approach. In this case, a Whitehead link can be disentangled (justifying a linking number
zero), because only the self-entanglement of one ring with itself (see figure 1) keeps the link
from falling apart. The second justification for using the Gauss integral is the fact that the
Gauss integral appears as the first relevant two-ring invariant appearing within a topological
perturbation series constructed from averages (vacuum-to-vacuum expectation values, vev’s)
of Wilson loops with respect to the non-Abelian Chern–Simons theory [17]. The latter has
been shown to be equivalent [18] to the HOMFLY knot polynomial which is an algebraic
invariant usually defined in terms of skein relations, i.e. a recursive equation relating different
sets of crossings (of the 2D projection of a knot or link) giving a recursive algorithm for
transforming different knots and links into each other [17]. In conclusion, the Gauss integral
appears as a quantity to define a minimal model for topology conservation which is well
defined within the more complete framework just mentioned [19].

More specifically, the present work revisits the problem of calculating the topological
interaction for a pair of mutually interlinked polymer rings. This is accomplished by
introducing the constraint that the distance between two segments, each belonging to a different
ring, be equal to R [20]. Previous work [20] on the problem contained several approximations:
the distance constraint was not strictly implemented within conformational averages but the
distance vector was somehow extracted by a pre-averaging approximation. This approximation
can be given up, as the present work will show. Moreover the discrete nature of the linking
number is treated within a systematic approach due to Iwata and Kimura [25] (it has recently
received some attention in [26]). Perhaps not too surprisingly, the anharmonic attraction ∝R4

found in [20] still holds for large distance R/RG � 1 where RG ∼
√

Nl2 is the radius of
gyration of a single random walk ring.

The outline of the paper is as follows. In section 2, we discuss topology conservation using
the Gauss invariant together with a distance constraint and define conformational averages. In
section 3, the (effective) topological interaction between chain segments belonging to different
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R

Figure 2. Two entangled rings with two segments located on different rings kept at a distance R.

rings is calculated: in section 3.1, we review the topological moment expansion due to Iwata
and Kimura [25], in section 3.2 we derive the topological interaction within the approximation
of using the second topological moment conditional on a distance constraint M2(R), before
finally giving an explicit expression for the latter in section 3.3. Finally we give results in
section 3.4 for the topological interaction and discuss its dependence on segment length N. In
section 4, a conclusion and a brief outlook is given.

2. Topology conservation with the Gauss invariant and a distance constraint

We consider a very simple system, i.e. a pair of flexible rings which are mutually interlinked
as in figure 2 and which are subject to an additional distance constraint. The latter
controls the distance between two segments each of which is part of a different ring and is
introduced to monitor the effective topological interaction which arises due to the topological
constraint.

Based on justifications mentiond in the introduction, the topological constraint imposed
on the pair of rings—the fact that they are wound around each other as in figure 2—is expressed
in terms of the Gauss invariant

�(C1, C2) = �12 = 1

4π

∮
C1

∮
C2

dr1 ∧ dr2 r1 − r2

|r1 − r2|3 . (1)

The vector functions rα = rα(s) for α = 1, 2 denote the position in three-dimensional
space of segments along the polymer contour, parametrized in terms of s, for each ring
Cα . The Gauss invariant is always an integer for a given topological state regardless of the
deformations imposed on the polymer conformation, i.e. the segment position rα(s), which
leave the topological state invariant (siehe z.B. [17]). The integer which is denoted by n here
is usually called the linking number and counts how often one chain is wound around the other
before being closed to a ring (apart from a sign which depends on the respective orientation
of each ring).

The problem that we propose to study is the partition sum of a given topological state, i.e.
a linking number n, for a pair of rings subject to the distance constraint as shown in figure 2,

Z(n; R) = 〈δ(n,�12)〉R. (2)

Inside the average to be defined below a Kronecker delta appears which is equal to 1, if the
arguments are equal, and 0 else. The average is taken w.r.t. to random walk ring conformations
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〈· · ·〉R =
∫

Dr1(s)

∫
Dr2(s)δ(r1(0) − r1(N))δ(r2(0) − r2(N))

× δ(r1(0) − r2(0) − R) · · · exp[−(βH 1 + βH 2)]
1

Z12,R
(3)

where

βHα = 3

2l2

∫ N

0
ds

(
∂rα

∂s

)2

(4)

and Z12,R is equal to the numerator on the rhs of equation (3) without the dots. Let us note here
that actual averages (carried out in appendix A) involve a discretized version of the continuous
formalism given above.

Problem (2) has been studied before by Iwata and Kimura [25] and more recently by Otto
and Vilgis [20]. In [25], the integrand of the Gauss invariant was however approximated by
its behaviour close to |r1 − r2| � 0, an approximation which is not necessary as will be shown
below. In [20], the Gauss invariant was treated in full generality, but a full implementation of
the distance constraint was circumvented by a pre-averaging procedure involving the tangent
vector densities. This approximation can be avoided as will be shown below. The previously
obtained results [20] are in fact validated by the subsequent analysis.

The choice of the random walk ensemble for polymer conformations is motivated by
the search for an analytical solution. Inclusion of the excluded volume interactions appears
possible in principle (in the context of O(N) field theories [21]), but seems to render the
problem of finding an expression for Z(n; R) rather hopeless. A derivation of topological
interactions from the Gauss invariant treating the latter in its most possible generality has not
been done up to now even for the simple case of random walk conformations (except for a
first approach in [20]).

3. The effective topological interaction

3.1. Topological moment expansion

We next proceed to calculate Z(n; R). We rewrite the Kronecker delta inside the brackets in
equation (2) by introducing a topological charge,

Z(n; R) =
∫ π

−π

dg

2π
eign〈eig�12〉R ≡

∫ π

−π

dg

2π
eignZ̃(g; R). (5)

As already noted in [25], the function Z̃(g; R) can be expanded in terms of topological
moments of order k, 〈(�12)

k〉R. Assuming that Z(n; R) is an even function of n, only the even
moments k = 2p for an integer p do contribute. This yields

Z̃(g; R) =
∞∑

p=0

(ig)2p

(2p)!
M2p(R) (6)

where

M2p(R) = 〈(�12)
2p〉R. (7)

Next we assume that the 2p-correlation can be decomposed into the products of p factors
involving the correlation 〈(�12)

2〉R so that

〈(�12)
2p〉R � (2p)!

2pp!
〈(�12)

2〉pR. (8)
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Then one obtains

Z̃(g; R) = exp

(
−g2

2
M2(R)

)
. (9)

We are thus left with determining the second topological moment given by the distance
constraint R,M2(R). Before giving the explicit functional dependence on R, we first derive
the topological interaction for a given linking number and distance constraint in order to show
how M2(R) appears in the interaction.

3.2. Topological interaction from the second topological moment

In order to establish the effective topological interactions between segments separated by a
distance R = |R| on different rings which are mutually entangled, we return to the evaluation
of the constrained partition sum Z(n; R) introduced above. The second topological moment
M2(R) appears—in the approximation (8) given above—inside the conjugate partition sum
Z̃(g; R). It now appears natural to directly perform the integral in equation (5). However
this leads to negative values for Z(n; R) for even values of n, while odd values of n give
positive values, a problem already discussed by Iwata and Kimuara [25]. It is traced back
there to an unbalanced distribution of errors involved in the approximation of breaking up
higher moments of �2

12 as done in equation (8). Positive errors are accumulated for odd n and
negative errors for even n [25].

We therefore proceed like in [25], using the ‘continuous Fourier transformation (CFT)
method’, whose basic steps are briefly recalled here. While Z(n; R) is defined for discrete n,
a continuous function ζ(t; R) can be obtained by defining

ζ(t; R) =
∑

n

δ(t − n)Z(n; R). (10)

Its Fourier transform reads as

ζ̃ (u; R) =
∫ ∞

−∞
dt e−iut ζ(t; R). (11)

On the level of Fourier transforms, ζ̃ (u; R) and Z̃(g; R) are identified for u = g which yields

ζ̃ (u; R) = Z̃(u; R) = exp

(
−u2

2
M2(R)

)
. (12)

The inverse Fourier transform yields

ζ(t; R) =
∫ ∞

−∞

du

2π
eiut ζ̃ (u; R)

= 1√
2πM2(R)

exp

(
− t2

2M2(R)

)
. (13)

Now, the constrained partition sum of discrete linking numbers n �= 0 is obtained by integrating

Z(n; R) =
∫ n+ 1

2

n− 1
2

dt ζ(t; R). (14)

In the present case, one finds

Z(n; R) = 1

2

(
erf

[
|n| + 1

2√
2M2(R)

]
− erf

[
|n| − 1

2√
2M2(R)

])
(15)

where erf(x) is the error function. As noted in [25], the CFT method leads to the following
problem. Even though ζ(t, R) is assumed to be a multipeak function in t, the final result just
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obtained is a smooth function in t. In other words the fine structure in t is lost, which is related
to the approximations imposed on M2p(R) for large p � 1 [25]. In the following we are not
interested in the exact quantitative dependence of Z(n; R) on n, but rather on the asymptotic
behaviour for large R = |R|. Moreover, the errors contained in the CFT method are evenly
distributed among different n.

The effective topological interaction can be derived from Z(n; R) as follows:

βF(n; R) = −ln Z(n; R) (16)

where β = 1/kBT is the inverse thermal energy. If M2(R) = M2(R) is small and/or n � 1

which happens for large R = |R| (see below), such that x± = |n|± 1
2√

2M2(R)
� 1 then the following

expansion will be used:

βF(n; R) = βF(n;R) =
(|n| − 1

2

)2

2M2(R)
+ ln

[
|n| − 1

2√
2πM2(R)

]
+ O(1/x−). (17)

We see that the behaviour of the topological interaction βF(n;R) w.r.t. R, in particular for
R � l

√
N , is dominated by 1/M2(R).

3.3. The second topological moment

We now proceed to calculate M2(R). Using the Fourier integral representation of the Gauss
invariant

�12 = −i
∫

q

∫ N

0
ds

∫ N

0
ds ′ ṙ1

µ(s)ṙ2
ν (s ′) exp(iq · (r1(s) − r2(s ′)))εµνλ

qλ

q2
(18)

where summation over repeated indices is implied and
∫

q · · · = ∫
d3q/(2π)3 . . . , the second

topological moment reads as

M2(R) = −
∫

q

∫
k
�4

α=1

(∫ N

0
dsα

)
εµνλεστρ

qλ

q2

kρ

k2

〈
ṙ1
µ(s1)ṙ

2
ν (s3)ṙ

1
σ (s2)ṙ

2
τ (s4)

× exp(iq · (r1(s1) − r2(s3))) exp(ik · (r1(s2) − r2(s4)))
〉
R. (19)

The term in brackets inside the integrals can be rewritten as

γµνστ = 〈
ṙ1
µ(s1)ṙ

2
ν (s3)ṙ

1
σ (s2)ṙ

2
τ (s4) exp(iq · (r1(s1) − r2(s3))) exp(ik · (r1(s2) − r2(s4)))

〉
R

= exp(i(q + k) · R)Fµσ (q, k, s1, s2)Fµτ (−q,−k, s3, s4). (20)

The factorization on the rhs is due to the factorization of conformational averages with
respect to polymers 1 and 2 in equation (3). Details are given in appendix A. We find for
Fµσ (q, k, s1, s2) that

Fµσ (q, k, s1, s2) = 1

2

{
l2

3
δµσ

(
1

N
− δ(s1 − s2)

)
+

(
l2

3

)2 [
1

N
(s1qσ + s2kσ ) − kσ

]

×
[

1

N
(s1qµ + s2kµ) − qµ − kµ

] }

× exp

{
− l2

6N

[
s1(q + k)2 + (s2 − s1)k

2 − 1

N
(s1q + s2k)2

]}
+ [s1 ↔ s2, q ↔ k] . (21)

The last line on the rhs indicates the operations to be done in order to obtain a fully symmetrized
expression (see appendix A). Let us note first that the term following the factor

(
l2

3

)2
on the
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rhs does not contribute to the second moment, because expressions such as · · · qµqλεµνλ · · ·
vanish. In order to further simplify the subsequent analysis, we neglect terms involving 1/N

as we assume N � 1 as in [23]. Then Fµσ (q, k, s1, s2) reads as

Fµσ (q, k, s1, s2) � −
(

l2

3

)
δµσ δ(s1 − s2) exp

{
− l2

6
s1(q + k)2

}
. (22)

The second topological moment may then be computed as

M2(R) = −2

(
l2

3

)2 ∫
q

∫
k
f (q + k, N)2 q · k

q2k2
ei(q+k)·R (23)

where

f (u, N) =
∫ N

0
ds e− l2

6 su2 = 1(
l2

3

)
u2

(
1 − e− l2N

6 u2)
. (24)

Transforming k → u = q + k, one obtains

M2(R) = −8
∫

q

∫
u

q · (u − q)

q2|u − q|2
eiu · R

u4

(
1 − e− l2N

6 u2)2
. (25)

Introducing u′ =
√

l2N/(6)u and X = R/
√

l2N/(6) and dropping primes, the double integral
is slightly simplified:

M2(R) = −8
∫

q

∫
u

q · (u − q)

q2|u − q|2
eiu · X

u4
(1 − e−u2

)2. (26)

The integration which involves some approximations affecting the short-distance behaviour
(to be discussed below) and which is given in appendix B, yields

M2(R) = 1

8π3

(
�

√
π

2
− π1F1

(
−1

2
; 3

2
; X2

4

))
e−X2/4 (27)

where R = X
√

l2N/6 and 1F1(α;β; x) is the confluent hypergeometric function. The
expression involves a cutoff � ∼ √

N (see appendix A) whose relevance will be discussed
below. It is interesting to note what happens when M2(R) is integrated over all distances
between the segments. Then the unconditional second topological moment is obtained as

M2 = V −1
∫

d3R M2(R)

= V −1
√

l2N/6
3
4π

∫ ∞

0
dXX2 1

8π3

(
�

√
π

2
− π 1F1

(
−1

2
; 3

2
; X2

4

))
e−X2/4

∼ V −1l3N3/2(c1N
1/2 − c2) (28)

where in the last line � ∼ √
N has been used and where c1 and c2 are numerical factors. Note

that the factor 1/V on the rhs of the previous equation is understood in the limits V → ∞
and N → ∞ such that ρ = N/V is the density. This situation is given if two rings fill out a
macroscopic volume. Then the unconditional second topological moment has the scaling

M2 ∼ ρl3(c1N − c2N
1/2) (29)

a result which up to numerical factors c1 and c2 has been found for the topological moment
of randomly entangled polymer rings in a dense system where the excluded volume effect is
ignored [22, 24]. Therefore, the cutoff-dependent first term on the rhs of equation (27) appears
essential in order to establish consistency with the well-known result for M2 for random walk
rings to scale to dominant order like ∝ N . We will see below that it affects the effective
segment–segment interaction only for small, up to intermediate, deformations of the rings.



2888 M Otto

As shown in the previous section, the behaviour of 1/M2(R) is particularly important to
obtain the large-R behaviour of the topological interaction. Note that

1F1

(
−1

2
; 3

2
; X2

4

)
= eX2/4

1F1

(
2; 3

2
;−X2

4

)
(30)

and using for large X � 1

1F1

(
2; 3

2
;−X2

4

)
� − 4

X4

(
1 +

12

X2
+ · · ·

)
(31)

one obtains:

1

M2(R)
� 8π3

(√
π

2
� exp(−X2/4) +

4π

X4

)−1

� 2π2X4 (32)

for large X = R/
√

Nl2/6. It gives the following effective topological interaction:

βF(n;X) � π2
(|n| − 1

2

)2
X4. (33)

Concerning the X4 dependence, this result agrees perfectly with the previously derived
asymptotics for the topological interaction of two concatenated chains based on a pre-averaging
approximation [20].

3.4. Results

Given the expression for the conditional topological moment (27), we now consider the
effective topological interaction in more detail. For large X, we use the first term in the
expansion (17). For small X where equation (17) is bound to fail, the exact expression (15) for
the partition function (based on the second topological moment conditional on R or X) is used.
In figure 3, curves for small X (obtained numerically from equation (15)) for the topological
interaction βF for linking number n = 1 for various chain lengths N are shown, together with
the corresponding curves for all X calculated from the first term in equation (17), with both
sets of curves involving equation (27) for the second topological moment M2(R).

The topological interactions computed from the full expression (15) smoothly approach
the approximate ones (valid for large X) based on equation (17). Whereas for large X the
topological interaction is independent of the chain length N approaching the asymptotic form
(33), such a dependence appears for intermediate and small X. To be precise, the interaction
becomes weaker for larger N for a given intermediate X, just below X = 10. This effect
might be due to the discrete polymer model used here. Let us consider two systems of two
concatenated rings which are similar in their conformation but which have different chain
lengths N1 and N2 with N2 > N1. Then the system with chain length N2 suffers a smaller
entropy loss due to the topological constraint. Thus the topological interaction is reduced.

However, for very small X the topological interaction does not show a monotonous
dependence on N, but passes through a minimum as N is increased from 103 to 109. Moreover,
for very large N a minimum of the topological interaction as a function of X starts to develop.
A strong repulsion of segments belonging to different rings at small X found in [20] is
not confirmed by the present calculation. On the other hand, the present work depends on
approximations (see appendix B) which possibly influence the short-distance behaviour of
the topological interaction. Therefore, no conclusive statement is claimed for the topological
interactions derived from the Gauss invariant on small scales X. A more complete analysis of
the short-distance behaviour is necessary and is the subject of future work.
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Figure 3. The topological interactions for linking number n = 1 based on, one, the first term in
equation (17) (thick lines), and two, on the full expression (15) for the partition function (thin lines),
both together with equation (27). The thin dotted line corresponds to the asymptotic expression
(33). The inset shows in a double-linear plot how the curves based on the full expression (15)
approach the approximate ones (equation (17)).

For extreme elongations X � 1, one might expect for the topological interaction a
crossover from X4 to X2 as claimed in [26], based on the argument that when two random
walk rings linked with linking number 1 are fully stretched, they form an effective random
walk chain. Apparently, this limit cannot be reached by the present approach. The argument
just given seems to assume, however, some local gluing and some partial inextensibility
of the chains which then leads to a mutual attachment of the rings due to the topological
constraint. Each ring conformation is however treated here w.r.t. to the ensemble of random
walks. Therefore the effective conformation of a single random walk chain is not reached.

4. Discussion

In the present work, the topological interaction between segments belonging to different
polymer rings which are mutually interlinked is considered. Two segments are singled out and
kept at a distance R, while the conformations of each ring are averaged w.r.t. a random walk
ensemble. Supplementing a previous calculation [20], the present analysis introduces several
refinements. First, the distance constraint is implemented from the very beginning. Second,
the discrete nature of the linking number is treated systematically following [25].

The topological interaction behaves asymptotically, i.e. for X � 1 where X =
R/

√
Nl2/6, as ∼ X4 as found previously [20]. For smaller X � 10, the topological interaction

depends on the chain length N. For intermediate distances X, an argument related to the reduced
entropy loss due to the topology conservation for increasing N can be given. For small X, no
final conclusive statement on the topological interaction can be given, as the approximations
used for the conformational averages in order to obtain analytical results possibly affect small
length scales. We remark however that the present result is consistent with calculations of the
unconditional second topological moment [22, 24].
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The present work may be considered as a further step towards understanding the elasticity
of DNA catenanes (interlinked rings) which can be studied in principle using single-molecule
techniques [12]. A first step was the previous study [20] in order to understand the
conformational statistics of DNA catenanes [11]. The simple random walk model used
here is of course not realistic in this context. Apart from the excluded volume problem,
DNA molecules are semiflexible chains [27] which require the Kratky–Porod model [28]
that however leads to analytical problems. Nonetheless, for long chains, self-avoiding walk
behaviour is recovered.

Possible directions of research on the problem presented here do not only concern the use
of more realistic conformational models relevant to the study of biomolecules. Future work
should aim at a more accurate treatment of conformational averages, in particular the inclusion
of terms which were omitted here for large N (which amount to neglecting the closure of
chains). Another important problem is the issue of localization: i.e. the hypothesis, that a
number of segments are localized close to a region containing the link, motivating concepts
such as slip-links (see e.g. [29]) which have found renewed interest [30].

Acknowledgment

Financial support by the DFG under grant Zi209/6-1 is gratefully acknowledged.

Appendix A. The correlation function γµνστ

Following [23], we calculate the following correlation function of equation (20):

γµνστ = 〈
ṙ1
µ(s1)ṙ

2
ν (s3)ṙ

1
σ (s2)ṙ

2
τ (s4) exp(iq · (r1(s1) − r2(s3))) exp(ik · (r1(s2) − r2(s4)))

〉
R
.

(A.1)

To do so, we introduce a discretized random walk r1(s) = R1
0 +

∑s
i=1 b1

i such that the measure
of the path integral in equation (3) becomes

Dr1(s) →
∫

d3R1
0

N∏
i=1

∫
d3b1

i . (A.2)

Then the correlation function given above is derived from the following generating functional:

G
({

h1
i

}
,
{
h2

i

}; q, k; s1, s2, s3, s4
)

= 〈exp(iq · (r1(s1) − r2(s3))) exp(ik · (r1(s2) − r2(s4)))〉{R},{h1
i },{h2

i }. (A.3)

The average is understood as

G
({

h1
i

}
,
{
h2

i

}; q, k; s1, s2, s3, s4
) = 1

Z12,R

∫
d3R1

0

∏
i

∫
d3b1

i

∫
d3R2

0

∏
i

∫
d3b2

i

× δ

(∑
i

b1
i

)
δ

(∑
i

b2
i

)
δ
(
R1

0 − R2
0 − R

)

× exp

[
−βH 1 − βH 2 +

∑
α=1,2

∑
i

hα
i · bα

i

]
exp

[−i(q + k) · R1
0 + i(q + k) · R2

0

]

× exp

[
−iq ·

s1∑
i=1

b1
i − ik ·

s2∑
i=1

b1
i + iq ·

s3∑
i=1

b2
i + ik ·

s4∑
i=1

b2
i

]
. (A.4)
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Products and sums in the above equation marked by an index i are only supposed to cover
the range i = 1, . . . , N . The integrations w.r.t. to Rα

0 for α = 1, 2 in the numerator and
denominator on the rhs of the above equation are easily carried out to give

G
({

h1
i

}
,
{
h2

i

}; q, k; s1, s2, s3, s4
) = exp(i(q + k) · R)F

({
h1

i

}
, q, k, s1, s2

)
×F

({
h2

i

}
,−q,−k, s3, s4

)
(A.5)

where

F ({hi}, q, k, s1, s2) = 1

Z1

∏
i

∫
d3bi δ

(∑
i

bi

)
exp

[
− 3

2l2

∑
i

(bi )
2 +

∑
i

hi · bi

]

× exp

[
−iq ·

s1∑
i=1

bi − ik ·
s2∑

i=1

bi

]
. (A.6)

The partition sum Z1 is the single ring partition function divided by a volume factor (originating
from the integrations w.r.t. to Rα

0 for α = 1, 2 which have already been carried out). Now one
has to choose an order for s1, s2 which are now considered as being discrete out of 1, . . . , N ,
say s1 � s2. Then the integrations are easily carried out to give

F ({hi}, q, k, s1, s2) = exp

[
l2

6N

(∑
i

hi + s1q + s2k

)2

− l2

6

(
s1∑

i=1

(hi + q + k)2 +
s2∑

i=s1+1

(hi + k)2 +
N∑

i=s2+1

h2
i

) ]
. (A.7)

The case s1 > s2 is obtained by interchanging s1 ↔ s2 and q ↔ k. Now, the correlation
function γµνστ is obtained as follows:

γµνστ = 1

(−i)4

∂

∂h1
µ,s1

∂

∂h2
ν,s3

∂

∂h1
σ,s2

∂

∂h2
τ,s4

G
({

h1
i

}
,
{
h2

i

}; q, k; s1, s2, s3, s4
)∣∣

h1
i =0,h2

i =0. (A.8)

Using equation (A.5) together with equation (A.7) one obtains equation (20) with
equation (21) for γµνστ given in the main text.

Appendix B. Approximate evaluation of integrals

Defining the integral w.r.t. q in equation (26) as l(u) one obtains

M2(R) = − 16

(2π)2

1

X

∫ ∞

0
du

sin(uX)

u3

(
1 − e−u2)2

l(u) (B.1)

where

l(u) = l(u) =
∫

q

q · (u − q)

q2|u − q|2 = 2

(2π)2
B(3/2, 3/2)

∫ �

0
dq

u2q2 − q4

(q2 + u2)2
. (B.2)

Note that the integral in the last equation needs to be cut off by a parameter � which is related
to the cutoff in momentum space �′ via � = �′√l2N/6 and thus proportional to

√
N if

�′ ∼ l−1. Evaluating the q-integral yields for l(u)

l(u) = 1

(2π)2

π

8

(
π

2
u − 2� + 3u arctan(�/u) − �u2

�2 + u2

)
. (B.3)
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In order to make analytical progress, let us approximate
(
1 − e−u2)2/

u3 � u e−u2
in

equation (26). The error involved in this approximation concerns large u, and the short-
distance behaviour of M2, which is discussed in the main text. Then the second topological
moment is given by the expression

M2(R) = − 16

(2π)2

1

X

∫ ∞

0
du l(u)u sin(uX) e−u2

. (B.4)

Inside the integral l(u) is approximated, for � � 1, as

l(u) � 1

(2π)2

π

8

(
−2� + 2πu − u2

�

)
(B.5)

where arctan(�/u) � π/2 for � � 1. Using the above approximation, evaluation of the
integral w.r.t. u involves the following integrals. The term of order 0 in u gives the integral

I1 =
∫ ∞

0
du u sin(uX) e−u2 =

√
πX

4
e−X2/4. (B.6)

The term linear in u in l(u) yields the integral

I2 =
∫ ∞

0
du u2 sin(uX) e−u2 = X

2
e−X2/4

1F1

(
−1

2
; 3

2
; X2

4

)
(B.7)

while the term of order 2 in u involves evaluating

I3 =
∫ ∞

0
du u3 sin(uX) e−u2 = X

2
e−X2/4�(5/2)1F1

(
−1; 3

2
; X2

4

)
. (B.8)

The function 1F1
(−1; 3

2 ; X2

4

)
explicitly gives 1 −X2/6. However, we will neglect the u2 term

in l(u) because it is multiplied by a factor 1/� (see equation (B.5)). Collecting terms, one
obtains for the second moment

M2(R) = 1

8π3

(
�

√
π

2
− π1F1

(
−1

2
; 3

2
; X2

4

))
e−X2/4 (B.9)

where R = X
√

l2N/6 and 1F1(α;β; x) is the confluent hypergeometric function (see
equation (27) in the main text).
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